Dimensionnement d'un ouvrage de rétention par la méthode des pluies (BV6) Hypothèses: Calcul effectué selon la méthode des pluies 10 mm Hauteur d'abattement des petites pluies : Débit de fuite régulé à l'exutoire (Q_s) : 0,00 l/s Perméabilité moyenne du sol (k) : Surface d'infiltration pour volume d'abattement (S_{inf1}) : 9,30E-06 m/s 862 m² Surface d'infiltration pour volume de stockage (S_{inf2}) : 862 m² Débit d'infiltration pour volume d'abattement (Q_{inf1}) : 8,02 l/s $(Q_{infa} = 1000 . k . S_{inf1})$ Débit d'infiltration pour volume de stockage (\mathbf{Q}_{inf2}) : 8,02 l/s $(Q_{inf} = 1000 . k . S_{inf2})$ Débit régulé venant de l'amont dans le volume de stockage (Q $_{\!\scriptscriptstyle \rm q}$) : 0,00 l/s $(Q_f = Q_s + Q_{inf2} - Q_a)$ Débit de fuite total de calcul pour le volume de stockage (Q_f) : 8,02 l/s CALCUL DE LA SURFACE ACTIVE Surface active S_a (ha) Surface S (ha) Coef. d'apport C stabilisé 0,0733 1,00 0,0733 0,0862 0,0862 espace vert 0,0017 0,1650 0,98 0,1612 Total Hauteur de la pluie d'abattement h₁ = 10 mm olume d'abattement pour pluie de 10 mm V₁ = 16 m³ V₁ en m³ = 10000.S_a.h₁ Durée de vidange du volume d'abattement par infiltration $T_{v1} = V_1/Q_{inf1}.3600$ $T_{v1} = 1 h$ Calcul de la durée (T) de la pluie de dimensionnement Période de retour considérée

100 ans

 $T_v = V/Q_f^*3600$

durée de pluie donnant le volume de stockage maxima

h en mm = a.T^(1-b) selon formule de Montana

i en mm/h = 60.a.T^b selon formule de Montana

Coefficients de Montana retenus a : 13,715

b: 0,692 T = 46 min

Hauteur de la pluie de dimensionnement h_2 = 45 mm

Intensité de la pluie de dimensionnement

i₂ = 58 mm/h

Durée de vidange du volume de stockage - hors volume d'abattement